[image: image6.png]

[image: image7.png]Microsoft
CERTIFIED

Partner

COM.NET Modelli

Rev 4.9 – dicembre 2007
La gestione della modulistica e delle stampe nel sistema COM.NET

(Lettere, Moduli, Diari, Anamnesi, Liste, Query e Statistiche)

La gestione dello Status nel sistema COM.NET

MG, LG – 11 nov. 2003

Rev. 1 - LG, GF – 18 nov. 2003 – aggiunto il punto 6

Rev. 2 - GF – 21 nov 2003 – aggiunti i punti 7-9

Rev. 3 - GF – 13 dic 2003 – aggiornato elenco placeholders e descrizione campi

Rev. 4 - GF - maggioo 2004 - completamente riorganizzato - aggiornato alla versione di avvio del software - aggiunte le Liste - aggiunta la funzione modifica

Rev. 4.1 - GF – 8 luglio 2004 – aggiunte query e statistiche nelle liste, citato l’altro documento, tolta tblMenu

Rev. 4.2 – LG,AM – 14 Aprile 2005 – definito meglio il significato dei campi della tabella tblModelliCampi
Rev. 4.3 - LG – 18 maggio 2005 – aggiunto nuovo campo strValoreDafultSQLStored nella tabella tblModelliCampi
Rev. 4.4 - AM – 25 maggio 2005 – modificato riferimento a path per accedere ai css e ai file xsl

Rev. 4.5 – LG,AM – 26 maggio 2005 – aggiunti placeholders per provincia paziente e codice ausl paziente

Rev. 4.6 – LG,AM – 27 luglio 2006 – riscritto il cap. 6 sulle liste e inserito il paragrafo 4.5 per l’uso di Access
Rev. 4.7 – GF – 27 luglio 2007 – aggiunto il paragrafo 4,6 per gli Status dinamici; aggiunto il paragrafo 5.6 per i modelli non storicizzati
e un promemoria per i controlli XSL da usare in strXSLForm, Modifica, Stampa
Rev. 4.8 – LG GF – 23 novembre 2007 – aggiunto il paragrafo 5.8 e l’Appendice 3 per i diari con la nuova funzione di stampa
Rev. 4.9 - GF – 20 dicembre 2007 – aggiornamenti alla tabella tblModelli, aggiunta Tips & Triks

Sommario

41. Organizzazione e funzionamento

42. I fogli XLS

53. I valori default

64. Le tabelle

64.1
la tabella tblModelli

74.2
la tabella tblModelliCampi

84.3
le tabelle tblModelliValori e tblModelliCampiValori

84.4
la tabella tblListe

94.5
accesso alle tabelle

104.6
le tabelle per gli Status dinamici

115. Creazione di un nuovo modello

115.1 aggiungere una riga alla tabella tblModelli

115.2 aggiungere una riga per ogni controllo del form alla tabella tblModelliCampi

125.3 tornare alla tabella tblModelli ed editare strXSLForm e strXSLStampa

145.4 editare strXSLForm e salvarlo nel campo strXSLModifica

145.5 debug

145.6 modifica di un modello esistente

155.7 i modelli storicizzati

165.8 i modelli non storicizzati

175.9 i diari

186 Creazione di un nuova lista, query o statistica

186.1 select vs stored procedure

196.2 richiamo delle pagine pagListe.aspx e pagListeXML.aspx

196.3 pagListe.aspx

196.4 pagListeXML.aspx

216.5 approfondire la conoscenza di strXSL

216.6 il riordinamento eseguito dall'utente

23A1. I placeholders

24A2. Promemoria controlli XSL

26A3. I file XSL e le funzioni per i modelli di tipo diario

26A3.1 il file strXSLStorico

27A3.2 il file strXSLStampa

32A3.2 la paagina pagModelloViewStoricoStampa.aspx

34A4. Tips & Tricks

34A4.1 riempire un campo con l’età in anni

34A4.2 riempire un campo con il valore di un altro campo di tipo strValoreDefaultSQL

34A4.3 riempire un campo con il valore di diversi modelli e/o campi

35A4.4 riempire un campo con il valore di un altro campo di tipo strValoriLista

35A4.5 aggiungere campi a Modelli o Status già in uso

1. Organizzazione e funzionamento

Il sistema COM.NET consente di modificare e anche inserire nuovi modelli a caldo, senza arrestare il sistema e senza inficiarne il funzionamento.

Infatti il codice per la compilazione, la memorizzazione, la modifica, la cancellazione e la stampa di tutti i modelli è limitato a un unico motore, che preleva dal db le informazioni necessarie (pagMODELLO.aspx).

Ciò è possibile perché si memorizzano nel db i fogli di stile XSL per le Form (per l'input dei dati) e per le stampe desiderate. Il sistema è in grado di generare un file XML che viene unito dinamicamente al file XSL e produce un documento HTML che viene visualizzato e si può stampare.

Tutti i documenti prodotti vengono memorizzati in apposite tabelle.

Si intende per modello una qualunque schema per la raccolta dati da PC, per l'eventuale modifica dei dati e per la stampa (lettere, moduli, anamnesi, ecc.)

Le liste invece non necessitano di input, e quindi nemmeno di memorizzazione e di modifica dei dati, ma della sola la stampa: sono quindi una versione semplificata dei modelli, ma necessitano di una select o una stored procedure che fornisca i dati, di un ciclo per visualizzarli e della possibilità di ordinare la lista (pagPrenotazioniLista.aspx).

Anche le Query e le Statistiche vengono trattate come le liste, utilizzando le pagine parametrizzate pagListe.aspx e pagListeXml.aspx
Infine, nel 2007, è stata creata una struttura analoga per gestire gli Status dei pazienti, che sono così diventati dinamici.
Questo documento riporta tutte le informazioni necessarie e illustra tutti i passi da seguire per la manutenzione orinaria e straordinaria della modulistica e delle stampe senza intervenire a livello di programmazione.

Inoltre il sistema COM.NET consente un’ampia gamma di interventi per la personalizzazione, la gestione dei privilegi e l’implementazione di nuove funzioni, riassute nel documento COM.NET Manager (http://comnet.intranet.policlinico.mo.it/ doctecnici/).

Ad ogni buon conto, sul server sqlcom01, oltre al db in servizio COM_NET è stato creato anche u db di prova di nome COM_NET_DEV_INTERNO
2. I fogli XLS

I fogli XSL devono essere preparati fuori dal sistema. Si può copiare e modificare un modello già disponibile, o se ne può generare uno nuovo partendo da un documento HTML che contenga una Form.
Per accedere correttamente alle tabelle, si veda il successivo punto 4.5

I fogli XSL devono avere un blocco iniziale che apre il foglio, definisce un Template e che contiene i campi hidden che identificano il modello:

	<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>

 <xsl:template match="/MODELLO">

 <input type="hidden" name="CodiceModello">

 <xsl:attribute name="value"><xsl:value-of select="/MODELLO/@CodiceModello"/></xsl:attribute>

 </input>

 <input type="hidden" name="Revisione">

 <xsl:attribute name="value"><xsl:value-of select="/MODELLO/@Revisione"/></xsl:attribute>

 </input>

 <input type="hidden" name="IdPaziente">

 <xsl:attribute name="value"><xsl:value-of select="/MODELLO/@IdPaziente"/></xsl:attribute>

 </input>

e devono avere un blocco finale che chiude il Template e il Foglio:

	 </xsl:template>

</xsl:stylesheet>

In questo modo avremo a disposizione i valori dei campi, valorizzati attraverso i valori default in diversi modi come vedremo nel seguito, con la sintassi:

	<xsl:value-of select="CAMPO[@CodiceCampo='txtDottore']/ValoreDefault"/>

Le variabili possono essere utilizzate liberamente nella pagina, ma soprattutto servono per i controlli. Per un funzionamento corretto infatti, ogni controllo della Form deve essere ridefinito.

Si possono definire altri Template, utili per realizzare routine:

	<xsl:template name=""VaiACapo""> </xsl:template>

Si possono importare Template da file, utili per esempio per le intestazioni:

	<xsl:import href=""$$XSL_INCLUDE_PATH$$IntestazioneModelli.xsl""/>

I Template si richiamano nel Foglio al punto desiderato con:

	<xsl:call-template name=""Intestazione""></xsl:call-template>

3. I valori default

I valori default sono grandemente potenziati dalla possibilità di utilizzare select e stored procedure e dai cosiddetti placeholders che personalizzano la maschera a video (Form) riportando automaticamente le informazioni riferite al paziente focalizzato.

I placeholders, identificati dai caratteri $$ iniziali e finali, possono essere considerati pseudovariabili, in quanto l'utente li vede variare, ma per XSL sono costanti, in quanto immutabili durante l'esecuzione.

Un elenco dei placeholders disponibili è riportato in appendice.
La creazione di nuovi placeholders richiede piccole modifiche al codice.

4. Le tabelle

L'elenco e la descrizione completa delle tabelle e i sottoschemi E-R sono riportati nel documento COM.NET Tabelle.

4.1
la tabella tblModelli
	Campo
	Descrizione
	Esempio

	strCodiceModello
	Codice unico del modulo
	LETTERA_DIMISSIONI

	intRevisione
	Progressivo per le revisioni
	0, 1, 2, …

	strDescrizioneModello
	Descrizione
	Lettera di Dimissioni

	strTipoModello
	Tipo, per il raggruppamento
	Lettere, Modulo, ...

	strXSLForm
	Foglio XSL per l'inserimento
	<testo XSL>

	strXSLStampa
	Foglio XSL per la stampa
	<testo XSL>

	strXSLStorico
	Foglio XSL per lo storico dei diarii
	<testo XSL>

	strXSLModifica
	Foglio XSL per la modifica
	<testo XSL>

	booViewStorico
	Flag
	False, True

	booMantieniStorico
	Flag
	False, True

	booViewUltimoInserimento
	Flag
	False, True

	booAttivo
	Flag per attivare/disatt. modelli
	False, True

	tsUltimaModifica
	Tag temporale automatico
	<non modificare>

	booAttoMedico
	Flag
	False, True

Contiene l’elenco di tutti i modelli gestiti dal sistema.

Si noti la presenza di 4 campi che contengono i fogli XSL:

· strXSLForm per la visualizzazione e l'inserimento dei dati a video

· strXSLStampa per la stampa del modello

· strXSLStorico per la parte storica dei diarii (una riga per nota di diario)

· strXSLModifica per la modifica dei dati già raccolti e memorizzati

strTipoModello viene usato dal software per gestire i raggruppamenti di modelli

booViewStorico:

-1 apre in una pagina tutti i modelli di quel tipo: serve per i modelli di tipo diario

0 lista in una pagina tutti i modelli di quel tipo: serve per i modelli di tipo lettera

booMantieniStorico:
-1 eredita tutti i valori del modello precedentemente immesso

0 si comporta normalmente

Vedi 5.7 i modelli storicizzati perché questo implica decisioni su come ereditare i valori, dal modello nuovo o dal modello precedente.
booViewUltimoInserimento:

-1 all’atto della creazione di un nuovo modello riempie i campi con i valori del modello più recente
0 all’atto della creazione di un nuovo modello riempie i campi con i valori default indicati nella tabella tblModelliCampi

L’operazione viene compiuta dal software e funziona anche con i campi di tipo lista (anche multipla) e con i campi di tipo check-box, ma non con i campi di tipo radio-button
booAttoMedico:

questo flag dà valore di atto medico al modello e viene utilizzato per determinare i pz prevalenti e incidenti

4.2
la tabella tblModelliCampi
	Campo
	Descrizione
	Esempio

	strCodiceModello
	Come nella tabella tabModelli
	LETTERA_DIMISSIONI

	intRevisione
	Come nella tabella tabModelli
	0, 1, 2, …

	strCodiceCampo
	Codice Unico Campo
	COGNOME

	strDescrizioneCampo
	Descrizione
	Cognome Utente

	strTipoControllo
	Oggetto html
	

	strTipoValore
	Tipo valori (vedi oltre)
	

	intLunghezzaCampo
	Lunghezza campo (0 se non definita)
	25

	booObbligatorio
	Campo obbligatorio?
	True, False

	strValoreDefault
	Stringa
	DIMISSIONE

	strValoreDefaultSQL
	Query
	Vedi Appendice 4: Tips & Triks

	strValoreDefaultSQLStored
	Nome di una stored procedure
	spGetNumeroPrescrizione

	strValoriListaSQL
	Query
	

	strValoriLista
	Sequenza predefinita di valori
	

	intOrdinamento
	Aiuto per l'operatore
	

	tsUltimaModifica
	Tag temporale automatico
	<non modificare>

Contiene l’elenco di tutti i campi di tutti i modelli gestiti dal sistema (esempio in Appendice).

Il campo strTipoValore contiene uno dei tipi dati di SQL Server, ad esempio: Bit, Char, Datetime, Float, Int, Smallint, Text, Varchar

I campi strValoreDefault, strValoreDefaultSQL, strValoriListaSQL e strValoriLista contengono diversi tipi di valori default, assegnati con diverse modalità, e che possono contenere PlaceHolders (Vedi Appendice 4: Tips & Triks)
Il campo strValoriLista deve essere formattato nel seguente modo:

descrizione#valore|descrizione#valore|….

Dove per descrizione si intende quello che verrà visualizzato nella lista a discesa e con valore quello che verrà salvato nel database
Il campo strTipoControllo può contenere il tipo di oggetto html che verrà usato nel form. Ha scopo puramente descrittivo. L’unico caso in cui è importante che sia specificato è quello in cui corrisponde ad un <input type=”checkbox” ….
Il campo strValoreDefaultSQLStored deve contenere il nome di una stored procedure senza parametri di input. E’ sufficiente che la sotred ritorni un solo record con un solo campo perchè la procedura legge il primo campo del primo record assegnati.
4.3
le tabelle tblModelliValori e tblModelliCampiValori
Riempite automaticamente dal sistema ogni volta che viene prodotto un nuovo documento, ne conservano i dati per gestire lo storico e l’eventuale ristampa dei documenti.

La prima contiene un record per modello memorizzato, la seconda un record per ogni campo del modello.

4.4 la tabella tblListe

	Campo
	Descrizione
	Esempio

	intIdLista
	Codice unico del modulo
	20

	strNomeLista
	Descrizione
	Richiesta cartella

	strTipoLista
	Tipo, per il raggruppamento
	LISTE AM

	strQuery
	
	

	booStored
	Flag select/stored procedure:

se 0 si aspetta una select in strQuery e ‘a’ in strParametri

se -1 si aspetta una stored procedure in strQuery e i parametri richiesti da essa, separati da virgola nel campo in strParametri

	strParametri
	obbligatorio
	‘a’ oppure @intIdPaziente

	strStyleSheet
	Indirizzo relativo del file
	Css/Lista_Id20

	strXSL
	Foglio XSL, solo se chiamata da pagListeXml.aspx
	<testo XSL>

	strColOrdineIniziale
	Nome del campo
	strCognomeNome

	strTipoOrdineIniziale
	ascending/descending

obbligatorio se in strXSL è specificato un ordinamento
	

	tsUltimaModifica
	Tag temporale automatico
	<non modificare>

Contiene l’elenco di tutte le liste, query e statistiche gestite dal sistema.

Il flag booStored dice se il campo strQuery contiene una select o una stored procedure. Nel caso di una select, non si utilizza il campo strParametri, in quanto si usano i PlaceHolders, ma è comunque necessario valorizzare il campo con ‘a’.
Non è necessario utilizzare il campo strXSL: si può visualizzare il risultato della query in una semplice griglia formattata da strStyleSheet.
Si noti comunque la presenza di un solo campo che contiene il foglio XSL, strXSL, in quanto non è previsto input da parte dell’utente.

Si vedano le descrizioni delle procedure pagListe.aspx e pagListeXML.aspx nel cap. 6.

Si noti che non esistono tabelle per la memorizzazione dei dati: infatti le liste non producono dati, né si è ritenuto utile memorizzare le attività di lista.

4.5 accesso alle tabelle
Per accedere correttamente e semplicemente alle tabelle è utile usare Access come interfaccia. Sono stati preparati due database (comnet_Modelli.mdb e comnetDevInterno_Modelli.mdb) con le tabelle collegate ai db COM_NET e COM_NET_DEV_INTERNO sul server sqlcom01.

[image: image1.emf]

Occorre particolare attenzione quando si copiano campi, soprattutto quelli contenenti XSL. Infatti se la cella viene selezionata facendo clic su di essa quando il cursore è una croce negli appunti non viene inserito solo il contenuto della cella ma anche il nome del campo con il contenuto tra doppi apici:
[image: image2.emf]

[image: image3.emf]

Quando si incolla, se il nome del campo è lo stesso, non ci sono problemi, altrimenti nascono incongruenze.

Quindi, per copiare un campo posizionarsi nella cella presedente, spostarsi con il TAB in modo che il contenuto della cella viene selezionato e poi usare CTRL + C
4.6 le tabelle per gli Status dinamici

Nel 2007 sono stati introdotti gli Status dinamici per superare la staticità dello Status del paziente e per consentire la classificazione delle diagnosi di Ematologia.
Sì è deciso di utilizzare lo stasso approccio messo a punto per i modelli, che consente ampia flessibilità e possibilità di manutenzione senza fermi di sistema.

Sono state quindi generate le tabelle tblStatus, tblStatusCampi, tblStatusValori, tblStatusCampiValori. Inoltre è stata creata la tabella tblStatusCodifiche che memorizza i valori dei campi codificati. Infine sono state create le tabelle tblStatusCampiLog e tblStatusValoriLog per storicizzare lo Status in modo più preciso e adatto alla ricostruzione della storia del paziente. La lista 69 visualizza le modifiche apportate allo Status, mentre una opportuna procedura elabora la storia dello Status per consentire le statistiche.
5. Creazione di un nuovo modello

Per creare un nuovo modello è sufficiente aggiungere una riga alla tabella tblModelli, e tante righe quanti sono i campi attivi (controlli del form) del nuovo modello alla tabella tblModelliCampi.

Se si crea un nuovo tipo di modello (cioè se si inserisce un valore nuovo nel campo strTipoModello), è necessario inserire una riga nella tabella tblMenu affinchè l'utente possa richiamare il nuovo modello. Se invece si utilizza un tipo di modello già esistente, l’aggancio sarà automatico.

5.1 aggiungere una riga alla tabella tblModelli

Si devono valorizzare i campi:

· strCodiceModello (univoco per il db)

· strDescrizioneModello (voce della lista modelli: univoco per l’utente)

· strTipoModello

· intOrdine (per l’utente, all’interno dello stesso tipo)

· strXSLForm (copiare da uno simile)

· strXSLModifica (copiare dal precedente quando è pronto)

· strXSLStampa (copiare da uno simile)

5.2 aggiungere una riga per ogni controllo del form alla tabella tblModelliCampi

· copiare da righe con un controllo dello stesso tipo

· aggiustare strCodiceModello

· non è necessario aggiustare strCodiceCampo (è sufficiente che sia univoco all’interno dello stesso modello)

· definire il valore default assegnando uno dei seguenti:

	strValoreDefault è una stringa che può contenere placeholders, ad esempio:
affetta da $$DiagnosiPaziente$$

	strValoreDefaultSQL è una query, che può contenere placeholders, ad esempio:
SELECT tblModelliCampiValori.strValoreText as value FROM tblModelliCampiValori INNER JOIN tblModelliValori ON tblModelliCampiValori.intIdModelloValore = tblModelliValori.intIdModelloValore WHERE tblModelliCampiValori.strCodiceCampo='txtTesto' AND tblModelliValori.intIdPaziente=$$IdPaziente$$ AND tblModelliValori.strCodiceModello='LT_VISITA_S' AND tblModelliValori.intRevisione=0 order by tblModelliValori.intIdModelloValore desc per riportare il campo dal modello precedente o anche:
SELECT CONVERT(varchar(10),tblPrenotazioni.datPrestInizio,103) as value FROM tblPrenotazioni
WHERE tblPrenotazioni.intIdPaziente=$$IdPaziente$$ AND tblPrenotazioni.datPrestInizio > GETDATE() order by tblPrenotazioni.datPrestInizio asc per riportare la data del prossimo appuntamento.

Vedi Appendice 4: Tips & Triks

	strValoriListaSQL è una query che restituisce due soli campi value e descr che produce una collezione di coppie di stringhe da usare in una combo box e che può contenere placeholders, ad esempio:
SELECT intIdSede as value, strDescSede as descr FROM tblListaCvcSedi where IntIdPaziente=$$IntIdPaziente$$

	strValoriLista è una collezione di coppie di stringhe, separate dal carattere | e accoppiate dal carattere #, che vengono utilizzate in una combo box; la prima stringa sarà il valore che viene memorizzato, la seconda l'etichetta che viene visualizzata, ad esempio:
Egregio Collega, rinviamo alle Sue cure #Egregio Collega, rinviamo alle Sue cure|Caro Collega, rinviamo alle tue cure #Caro Collega, rinviamo alle tue cure |Caro $$NomeMedicoCurante$$, rinvio alle tue cure #Caro $$NomeMedicoCurante$$, rinvio alle tue cure |Caro $$CognomeMedicoCurante$$, rinvio alle tue cure #Caro $$CognomeMedicoCurante$$, rinvio alle tue cure |Cara $$NomeMedicoCurante$$, rinvio alle tue cure #Cara $$NomeMedicoCurante$$, rinvio alle tue cure |Cara $$CognomeMedicoCurante$$, rinvio alle tue cure #Cara $$CognomeMedicoCurante$$, rinvio alle tue cure |Egregio Collega, ricoveriamo #Egregio Collega, ricoveriamo | # |

5.3 tornare alla tabella tblModelli ed editare strXSLForm e strXSLStampa

Si ricordi quanto notato nel paragrafo 4.5.

Copiare il campo che contiene il Foglio, incollarlo nel NotePad (o in altro wordprocessor con incolla speciale) e apportare le modifiche necessarie:

	ASSEGNAZIONE
DI UNA STRINGA

(in <textarea>, <p>, <td>, ecc.)
	<textarea name="txtDottore" rows="1" cols="70">
<xsl:value-of select="CAMPO[@CodiceCampo='txtDottore']/ValoreDefault"/>
</textarea>

	ASSEGNAZIONE DI UN ATTRIBUTO

(in <input>, ecc.)
	<input type="text" name="txtDataDH">
 <xsl:attribute name="value">
 <xsl:value-of select="CAMPO[@CodiceCampo='txtDataDH']/ValoreDefault"/>
 </xsl:attribute>
</input>

	CICLO PER ASSEGNARE UNA LISTA

(in <select>)
	<select name="cmbSediCVC" size="1">
<xsl:for-each select="CAMPO[@CodiceCampo='cmbSediCVC']/ValoriListaSQL/item">
<option>
 <xsl:if test="@selected">
 <xsl:attribute name="selected"></xsl:attribute>
 </xsl:if>
<xsl:attribute name="value"><xsl:value-of select="value"/></xsl:attribute>
<xsl:value-of select="descr" />
</option>
</xsl:for-each>
</select>

	CHECK BOX
	<input type='checkbox' name='chkPazienteNoto' value='1'>

<xsl:if test=""(CAMPO[@CodiceCampo='chkPazienteNoto']/ValoreDefault) = '1'""><xsl:attribute name='checked'></xsl:attribute></xsl:if>

</input> paziente noto

	RADIO BUTTON
	<input type=""radio"" value=""urgente"" name=""radPriorità"">

<xsl:if test=""(CAMPO[@CodiceCampo='radPriorità']/ValoreDefault) = 'urgente'""><xsl:attribute name=""checked""></xsl:attribute></xsl:if>

</input> urgente

<input type=""radio"" value=""ordinario"" name=""radPriorità"">

<xsl:if test=""(CAMPO[@CodiceCampo='radPriorità']/ValoreDefault) = 'ordinario'""><xsl:attribute name=""checked""></xsl:attribute></xsl:if>

</input> ordinario

Per consentire le modifiche ai dati del modello, utilizzare i controlli come mostrato sopra: in particolare è sempre necessario assegnare l’attributo value con un valore default ai campi <input> e un valore default ai campi <text>, anche se vuoti.

Per evitare il malfunziamento nel caso che l’utente prema il tasto Invio sulla tastiera mentre il cursore è posizionato in un campo di testo, occorre gestire l’evento in questo modo:

	routine che gestisce la pressione del tasto Invio dentro un campo text
	<script language='javascript'>

 function GetReturnKey ()
 {

 if (event.keyCode == 13)

 {

 event.returnValue=false;

 event.cancel = true;

 document.all.WucModello1_SubmitInserisciModello.click();

 }

 }

</script>

	Trattamento completo del campo <input>
	<input type="text" name="txt…" size="90">

<xsl:attribute name=""onkeydown"">GetReturnKey ();</xsl:attribute>

<xsl:attribute name=""value"">

<xsl:value-of select=""CAMPO[@CodiceCampo='txt…']/ValoreDefault""/>

</xsl:attribute>

</input>

Si possono utilizzare funzioni e routine e si può accedere agli altri campi del modello:

	FUNZIONI
	<xsl:value-of select=""translate(CAMPO[@CodiceCampo='cmbPrestazioni']/ValoreDefault,'a','A')""/><P></P>

	DEFINIZIONE ROUTINE
	<!-- routine VaiACapo -->

<xsl:template name=""VaiACapo"">

<xsl:param name=""StringaDaTrasformare"" />

 <xsl:choose>

 <xsl:when test=""contains($StringaDaTrasformare,',')"">

 <xsl:value-of select=""substring-before($StringaDaTrasformare,',')"" />

 <!-- ripeti fino alla fine della stringa -->

 <xsl:call-template name=""VaiACapo"">

 <xsl:with-param name=""StringaDaTrasformare"">

 <xsl:value-of select=""substring-after($StringaDaTrasformare,',')"" />

 </xsl:with-param>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select=""$StringaDaTrasformare"" />

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

	UTILIZZO ROUTINE
	<xsl:variable name=""RisultatoF"">

<xsl:call-template name=""VaiACapo"">

<xsl:with-param name=""StringaDaTrasformare"" select=""CAMPO[@CodiceCampo='txtFirma']/ValoreDefault"" />

</xsl:call-template>

</xsl:variable>

<xsl:copy-of select=""$RisultatoF"" />

	ACCEDERE al campo strDescrizioneCampo)
	<xsl:value-of select=""CAMPO[@CodiceCampo='txtFirma']/DescrizioneCampo""/>

	SPAZIO BIANCO
	<xsl:text> </xsl:text>

oppure

<xsl:text disable-output-escaping="yes"><</xsl:text>

L’utilizzo di tutti i tipi di controllo e alcuni esempi di routine si trovano nel modello MD_PROPOSTA (Proposta di Ricovero).

Per ulteriori informazioni:

MSDNLibrary/XMLWebServices/XML/XMLProducts/MSXML/SDKDoc/MSXML3.0/XSLTRef/XPath

http://groups.google.it/groups?hl=it&lr=&ie=UTF-8&oe=UTF-8&q=xsl+include
Tener presente che viene automaticamente agganciato il foglio di stile:

\\sqlcom01\Userdata\Webdata\Com.NET.VIRTUAL_DIRS\css\modelli.css
e si può accedere, mediante il placeholder $$XSL_INCLUDE_PATH$$, alla directory
\\sqlcom01\Userdata\Webdata\Com.NET.VIRTUAL_DIRS\xsl
Verificare che siano presenti tutti e solo i controlli inseriti nella tabella tblModelliCampi e copiare tutto nel campo.

5.4 editare strXSLForm e salvarlo nel campo strXSLModifica

Si ricordi quanto notato nel paragrafo 4.5.

In fase di modifica non si devono ereditare i dati dal db, ma solo dal modello che si vuole modificare, quindi occorre sostituire tutte le ricorrenze di strValoreDefaultSQL con strValoreDefault.
Nel caso speciale degli appuntamenti futuri, questi vengono generati dalle righe prodotte da una select, ma vengono memorizzati come un unico campo e quindi devono essere modificati come tali:

	strXSLForm
	<xsl:for-each select=""CAMPO[@CodiceCampo='txtAppuntamenti']/ValoriListaSQL/item"">,<xsl:text> </xsl:text><xsl:value-of select=""descr"" /></xsl:for-each>

	strXSLModifica
	 <textarea name=""txtAppuntamenti"" rows=""2"" cols=""70"">

<<xsl:value-of select=""CAMPO[@CodiceCampo='txtAppuntamenti']/ValoreDefault""/>

5.5 debug

Per verificare le trasformazioni in fase di elaborazione, sono disponibili le seguenti opzioni:

· togliere dall’URL il parametro IDPaziente=xxxxxx per visualizzare l’XML con i placeholders
· aggiungere all’URL il parametro booViewXML=1
per visualizzare l’XML con i placeholders sostituiti

Si ricorda che il programma restituisce in XML tutti i valori possibili: ValoreDefault, ValoreDefaultSQL, ValoriLista e ValoriListaSQL: sarà il file XLSL ad usare il valore desiderato.

· aggiungere all’URL il parametro booViewXMLStorico=1
per visualizzare l’XML

dello storico

5.6 modifica di un modello esistente

E' sufficiente apportare le modifiche desiderate senza altre implicazioni.

E' possibile effettuare le modifiche a caldo: solo il modello toccato verrà affetto.

Si ricordi quanto notato nel paragrafo 4.5.
Collegamento per andare in modifica di un modello

http://comnet.intranet.policlinico.mo.it/pagModelloModifica.aspx?intIdModelloValore=1047978
5.7 i modelli storicizzati

Per mantenere traccia di tutte le modifiche, si può storicizzare un modello con il riporto autometico dei valori precedenti: abbiamo incontrato per esempio la scheda Prima visita dalla Radioterapia, che deve originare il Libro Rosso

Per impostare un modello di qesto tipo occorre:

· nella tabella tbl_Modelli:

settare a -1 il flag booMantieniSorico e

settare a -1 il flag booViewUltimInserimento
Si ricorda che il programma restituisce in XML tutti i valori possibili: ValoreDefault, ValoreDefaultSQL, ValoriLista e ValoriListaSQL, come si può vedere richiamando la pagina con l’aggiunta del parametro booViewXML=1
Pertanto si ricorda che per ereditare correttamente i radio-button occorre inserire:

 <xsl:for-each select=""CAMPO[@CodiceCampo='radPriorita']/ValoriLista/item"">

 <input type=""radio"" name=""radPriorita"">

 <xsl:attribute name=""value"">

 <xsl:value-of select=""value"" />

 </xsl:attribute>

 <xsl:if test=""@selected='true'"">

 <xsl:attribute name=""checked"">

 </xsl:attribute>

 </xsl:if>

 </input><xsl:value-of select=""descr"" />

 </xsl:for-each>

Infine c’è il caso interessante in cui la prima volta si vuole ereditare da un altro modello, (ValoreDefaultSQL) mentre le volte successive si vuole ereditare dal valore precedente (ValoreDefault). In questo caso occorre un test:

<textarea name=""txtDiagnosi"" rows=""3"" cols=""70"">

<xsl:if test=""CAMPO[@CodiceCampo='txtDiagnosi']/ValoreDefault = ''"">

<xsl:value-of select=""CAMPO[@CodiceCampo='txtDiagnosi']/ValoreDefaultSQL""/>

</xsl:if>

<xsl:if test=""CAMPO[@CodiceCampo='txtDiagnosi']/ValoreDefault != ''"">

<xsl:value-of select=""CAMPO[@CodiceCampo='txtDiagnosi']/ValoreDefault""/>

</xsl:if>

</textarea>
5.8 i modelli non storicizzati

Esistono modelli che non devono essere storicizzati, ma devono essere mantenuti in un’unica versione sempre modificabile: abbiamo incontrato per esempio:

· l’anamnesi

· il frontespizio e il riassunto dei trattamenti della RT

· schede per la raccolta dati per l’Ematologia

Per impostare un modello di qesto tipo occorre:

· nella tabella tbl_Modelli:

settare a 0 il flag booMantieniSorico e

settare a -1 il flag booViewUltimInserimento

(al contrario di quanto avviene nei modelli storicizzati)

· nella tabella tbl_ModelliCampi aggiungere i seguenti campi di tipo hidden:
· strCodiceCampo: hidIntIdModelloValore, strTipoControllo: hidden, strTipoValore: int, strValoreDefaultSQL: select intIdModelloValore as value from tblModelliValori where tblModelliValori.strCodiceModello = 'NOME_MODELLO' and tblModelliValori.intRevisione = 0 AND tblModelliValori.booCancellato=0 and tblModelliValori.intIdPaziente = $$IdPaziente$$
· strCodiceCampo: hidData, strTipoControllo: hidden, strTipoValore: varchar,
strValoreDefaultSQL: SELECT GETDATE() as value
· strCodiceCampo: hidOperatore, strTipoControllo: hidden, strTipoValore: varchar,
strValoreDefaultSQL: SELECT dbo.tblOperatori.strCognome + ' ' + dbo.tblOperatori.strNome as value FROM dbo.tblOperatori WHERE intIdOperatore = $$IdOperatore$$
· strCodiceCampo: txtDataPrimoInserimento, strTipoControllo: hidden, strTipoValore: varchar, strValoreDefaultSQL: SELECT datDataIns as value FROM dbo.tblModelliValori WHERE (intRevisione = 0) AND (intIdPaziente = $$IdPaziente$$) AND (strCodiceModello = 'NOME_MODELLO')
· strCodiceCampo: txtOperatorePrimoInserimento, strTipoControllo: hidden, strTipoValore: varchar, strValoreDefaultSQL: SELECT dbo.tblOperatori.strCognome + ' ' + dbo.tblOperatori.strNome as value FROM dbo.tblModelliValori INNER JOIN dbo.tblOperatori ON dbo.tblModelliValori.intIdOperatore = dbo.tblOperatori.intIdOperatore WHERE (dbo.tblModelliValori.intRevisione = 0) AND (dbo.tblModelliValori.strCodiceModello = 'NOME_MODELLO') AND (dbo.tblModelliValori.intIdPaziente = $$IdPaziente$$)
· strCodiceCampo: txtDataUltimoAggiornamento, strTipoControllo: hidden
· strCodiceCampo: txtOperatoreUltimoAggiornamento, strTipoControllo: hidden
Il software saprà trattare il modello nel modo voluto.

Se il modello viene chiamato dal menu principale o comunque da un limk diretto, non è necessario valorizzare il campo strXSLModifica, perché il software utilizzerà il file strXSLForm anche per le modifiche; ma sarà necessario introdurre nel modello un link per eseguire la stampa, altrimenti questa funzione non sarà mai visibile:

 <xsl:if test=""(CAMPO[@CodiceCampo='hidIntIdModelloValore']/ValoreDefaultSQL) > 0 "">

 <xsl:choose>

 <xsl:when test=""(CAMPO[@CodiceCampo='hidIntIdModelloValore']/ValoreDefaultSQL) = ''"">

 <xsl:attribute name=""disabled"">

 true

 </xsl:attribute>

 </xsl:when>

 <xsl:otherwise>

 <xsl:attribute name=""href"">pagModelloStampa.aspx?intIdModelloValore=

<xsl:value-of select=""CAMPO[@CodiceCampo='hidIntIdModelloValore']/ValoreDefaultSQL""/>

 </xsl:attribute>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

Se il modello viene chiamato dal menu automatico generato in base al valore del campo strTipoModello, il file strXSLModifica è necessario per evitare un errore alla pressione dell’icona ‘modifica’, e sarà esattamente uguale al file strXSLForm.
In questo caso sarà possibile anche cancellare il modello.

5.9 i diari

I diari sono modelli storicizzati,brevi (nota di diario, appunto, ecc.) che contengo di solito un solo campo e che devono essere visualizzati aperti, cioè mostrando, sotto il campo per l’inserimento, i contenuti precedentemente registrati: i file strXSLForm e strXSLStorico vengono quindi aperti nella stessa pagina.
Nel 2007, il dott. Bertoni ha richiesto di stampare solo l’ultima nota di diario, in coda alle altre note, ma sulla stessa pagina (per non dover ripetere le firme nell’ipotesi che tutte le note vengano firmate singolarmente)

,E’ stata pertanto apportata una modifica che consente di specificare quali note stampare; in realtà tutte le note vengono stampate,(per non perdere la posizione nell’impaginazione) ma le note non selezionate vengono stampate con inchiostro bianco.
Con questa modifica si rende necessario anche il file strXSLStampa prima non veniva usato. Infatti è stata raelizzata la pagina per la stampa pagModelloViewStoricoStampa.aspx, che viene richiamata dal pulsante “Stampa selezionati” e che utilizza il file strXSLStampa.
Si veda l’Appendice 3 per i dettagli.
6 Creazione di un nuova lista, query o statistica
Questi output richiedono una select o una stored procedure per eseguire una query sul db (nel secondo caso occorre l'accesso al db in qualità di amministratore).

Se si vuole aggiungere un output che utilizza una delle pagine parametrizzate
· pagPrenotazioniListe.aspx per le liste delle prenotazioni
· pagListe.aspx e pagListeXml.aspx per query e le statistiche
si può procedere secondo le istruzioni che seguono, altrimenti è necessario modificare il codice della pagina che deve richiamare la lista.

Se si tratta di una lista da aggiungere alla pagina "Situazione prenotazioni" (pagPrenotazioniListe.aspx) è sufficiente aggiungere una riga alla tabella tblListe.

Se si tratta di una query o di una statistica, è necessario inserire il richiamo nell’albero dei menu, modificando la tabella tblMenu: Si veda il documento COM.NET Manager (http://comnet.intranet.policlinico.mo.it/ doctecnici/).

Si può scegliere il tipo di visualizzazione: se è sufficiente una semplice griglia, si utilizza la pagina pagListe.aspx.
Se si vuole controllare completamente la formattazione, utilizzare la pagina pagListeXml.aspx e valorizzare anche strXSL.
6.1 select vs stored procedure

Si ricordi la struttura della tabella, descritta nel par. 4.4

Il campo strQuery può contenere una select o una stored procedure.
Il campo booStored precisa l’opzione scelta:

· se 0 la procedura si aspetta una select nel campo strQuery e ‘a’ nel campo strParametri
· se -1 la procedura si aspetta una stored precedure nel campo strQuery e la lista dei paametri separati da virgola nel campo strParametri
Quindi in campo strParametri è obbligatorio.

Esempio

ALTER PROCEDURE spSTAT_ConteggioTerapiePrescritte

 (

 @datDataDa DATETIME = NULL

 , @datDataA DATETIME = NULL

 , @strTipoConteggio VARCHAR(20)

)

AS

 BEGIN

Questa stored procedure ha 3 parametri quindi occorre scrivere nel campo strParametri @datDataDa,@datDataA,@strTipoConteggio
6.2 richiamo delle pagine pagListe.aspx e pagListeXML.aspx
Il primo parametro, obbligatorio, è intIdLista, poi seguono i parametri richiesti e alla fine sono obbligatori i parametri ColOrdinamento e TipoOrdinamento, anche se non utilizzati. Per passare un valore nullo: nome_parametro=NOPAR
Nel caso di una select (che non ha parametri), occorre specificare

intIdLista=xxx&a=NOPAR&ColOrdinamento=NOPAR&TipoOrdinamento=NOPAR
Esempi:

http://comnet.intranet.policlinico.mo.it/pagListeXml.aspx?intIdLista=xxx&a=NOPAR&ColOrdinamento=NOPAR&TipoOrdinamento=NOPAR
http://comnet.intranet.policlinico.mo.it/pagListeXml.aspx?intIdLista=58&@datDataDa=11/07/2006&@datDataA=11/07/2006&@strTipoConteggio=NOPAR&ColOrdinamento=NOPAR&TipoOrdinamento=NOPAR
6.3 pagListe.aspx

Procedura semplice per visualizzare la risposta di una query in una griglia. Questa pagina utilizza il controllo DataGrid, quindi impagina automaticamente la tabella dei dati, secondo lo stile eventualmente assegnato in strStyleSheet.

Valorizzare i campi intIdLista, strQuery, booStored con 0 e strParametri con ‘a’.
Esempio:

intIdLista = 59

strNomeLista = Cambio medico

strTipoLista = STATISTICHE

strQuery = SELECT dbo.tblPazientiLog.intIdLog, dbo.tblPazientiLog.intIdPaziente, dbo.tblPazientiLog.datData, dbo.tblPazientiLog.intIdOperatore, dbo.tblPazientiLog.strTesto, dbo.tblPazientiLog.strTipoOperazione, dbo.tblOperatori.strCognome, dbo.tblOperatori.strNome

FROM dbo.tblPazientiLog INNER JOIN dbo.tblOperatori ON dbo.tblPazientiLog.intIdOperatore = dbo.tblOperatori.intIdOperatore

WHERE (dbo.tblPazientiLog.strTesto LIKE '%intidmedico%') AND (dbo.tblPazientiLog.intIdLog > 98500) ORDER BY dbo.tblPazientiLog.intIdLog DESC

booStored = 0

strParametri = a

6.4 pagListeXML.aspx

Procedura che consente di controllare completamente la formattazione, valorizzando il campo strXSL (Si ricordi sempre quanto notato nel paragrafo 4.5). Infatti questa pagina esegue la select o la stored procedure poi unisce il recordet dei dati con la struttua XML trasform contenuto nel campo strXSL.
La struttura XSL più semplice è la seguente:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

 <xsl:template match="/">

 <input type="hidden" name="intIdLista">

 <xsl:attribute name="value">

 <xsl:value-of select="LISTA/intIdLista" />

 </xsl:attribute>

 </input>

 <input type="hidden" name="ColOrdinamento">

 <xsl:attribute name="value">

 <xsl:value-of select="LISTA/ColOrdinamento" />

 </xsl:attribute>

 </input>

 <input type="hidden" name="TipoOrdinamento">

 <xsl:attribute name="value">

 <xsl:value-of select="LISTA/TipoOrdinamento" />

 </xsl:attribute>

 </input>

 <table border="1" cellpadding="0" cellspacing="0" id="tblRisultati" align="center">

 <tr>

 <xsl:for-each select="LISTA/ROW[1]/*">

 <th>

 <xsl:value-of select="name()"/>

 </th>

 </xsl:for-each>

 </tr>

 <xsl:for-each select="LISTA/ROW">

 <tr>

 <xsl:for-each select="*">

 <td>

 <xsl:value-of select="."/>

 </td>

 </xsl:for-each>

 </tr>

 </xsl:for-each>

 </table>

 </xsl:template>

</xsl:stylesheet>

Si possono utilizzare i campi per l'ordinamento, valorizzando strTipoOrdineIniziale con ascending o descending e inserendo
<xsl:variable name="varColOrdinamento"><xsl:value-of select="LISTA/ColOrdinamento" /></xsl:variable>

<xsl:variable name="varTipoOrdinamento"><xsl:value-of select="LISTA/TipoOrdinamento"/></xsl:variable>

prima di <table> e
<xsl:sort select="COL[@name=$varColOrdinamento]" order="{$varTipoOrdinamento}"></xsl:sort>

dopo il secondo for-each
L’XML generato dalla pagina pagListeXML.aspx contiene sempre questi nodi:

<?xml version="1.0" encoding="windows-1252"?>

<LISTA>

<intIdLista>58</intIdLista>
<ColOrdinamento>datDataPresenzaDH</ColOrdinamento>
<TipoOrdinamento>ascending</TipoOrdinamento>
<parametri>
<parametro nome="@datDataDa">11/07/2006</parametro>
<parametro nome="@datDataA">11/07/2006</parametro>
<parametro nome="@strTipoConteggio">NOPAR</parametro>
</parametri>
</LISTA>
Si ricordi (par. 5.5) che
per visualizzare l’XML (con anche i placeholders sostituiti) è sufficiente aggiungere all’URL il parametro booViewXML=1
6.5 approfondire la conoscenza di strXSL

Il blocco iniziale del Foglio XSL deve recepire i campi della tabella e diventa:

	<xsl:stylesheet version=""1.0"" xmlns:xsl=""http://www.w3.org/1999/XSL/Transform"">

<xsl:import href=""$$XSL_INCLUDE_PATH$$IntestazioneListePrenotazioni.xsl""/>

<xsl:output method=""html""/>

<xsl:key name=""distinctCART"" match=""/LISTA/ROW"" use=""./strCartellaCartone""/>

 <xsl:template match=""/"">

 <input type=""hidden"" name=""intIdLista"">

 <xsl:attribute name=""value"">

 <xsl:value-of select=""LISTA/intIdLista"" />

 </xsl:attribute>

 </input>

 <input type=""hidden"" name=""ColOrdinamento"">

 <xsl:attribute name=""value"">

 <xsl:value-of select=""LISTA/ColOrdinamento"" />

 </xsl:attribute>

 </input>

 <input type=""hidden"" name=""TipoOrdinamento"">

 <xsl:attribute name=""value"">

 <xsl:value-of select=""LISTA/TipoOrdinamento"" />

 </xsl:attribute>

 </input>

 <xsl:variable name=""varColOrdinamento""><xsl:value-of select=""LISTA/ColOrdinamento"" /></xsl:variable>

 <xsl:variable name=""varTipoOrdinamento""><xsl:value-of select=""LISTA/TipoOrdinamento"" /></xsl:variable>

 <xsl:for-each select=""LISTA/parametri/parametro"">

 <input type=""hidden"">

 <xsl:attribute name=""name"">

 <xsl:value-of select=""@nome"" />

 </xsl:attribute>

 <xsl:attribute name=""value"">

 <xsl:value-of select=""."" />

 </xsl:attribute>

 </input>

 </xsl:for-each>

Dopo le intestazioni, si introdurrà il ciclo principale:

	 <xsl:for-each select=""LISTA/ROW"">…

 </xsl:for-each>

Si può accedere alla posizione dei record restituiti dalla query:

	<xsl:key name=""distinctCN"" match=""/LISTA/ROW"" use=""./strCognomeNome""/>

	<xsl:variable name=""pos""><xsl:value-of select=""position() - 1"" /></xsl:variable>

 <xsl:choose>

 <xsl:when test=""(/LISTA/ROW[number($pos)]/strCognomeNome != strstrCognomeNome) or (position() = 1)"">…</xsl:when>

 <xsl:otherwise>…</xsl:otherwise>

 </xsl:choose>

6.6 il riordinamento eseguito dall'utente

Per consentire all'utente il riordino desiderato si provvede alla visualizzazione di una riga sensibile, che presenti gli ordinamenti possibili:

	<table class=""table_ORDINAMENTO"" align=""center"">

<tr>

<td class=""td_OrdClick"" onclick=""document.all.ColOrdinamento.value='strNomeAttivita';document.all.TipoOrdinamento.value='ascending';document.all.Form1.action='pagListeXml.aspx';document.all.Form1.submit()"">+</td>

<td>Attività</td>

<td class=""td_OrdClick"" onclick=""document.all.ColOrdinamento.value='strNomeAttivita';document.all.TipoOrdinamento.value='descending';document.all.Form1.action='pagListeXml.aspx';document.all.Form1.submit()"">-</td>

<td> </td>

<td class=""td_OrdClick"" onclick=""document.all.ColOrdinamento.value='strNomeRisorsa';document.all.TipoOrdinamento.value='ascending';document.all.Form1.action='pagListeXml.aspx';document.all.Form1.submit()"">+</td>

<td>Risorsa</td>

<td class=""td_OrdClick"" onclick=""document.all.ColOrdinamento.value='strNomeRisorsa';document.all.TipoOrdinamento.value='descending';document.all.Form1.action='pagListeXml.aspx';document.all.Form1.submit()"">-</td>

<td> </td>

<td class=""td_OrdClick"" onclick=""document.all.ColOrdinamento.value='strCognomeNome';document.all.TipoOrdinamento.value='ascending';document.all.Form1.action='pagListeXml.aspx';document.all.Form1.submit()"">+</td>

<td>Nome</td>

<td class=""td_OrdClick"" onclick=""document.all.ColOrdinamento.value='strCognomeNome';document.all.TipoOrdinamento.value='descending';document.all.Form1.action='pagListeXml.aspx';document.all.Form1.submit()"">-</td>

…

</tr>

</table>

A1. I placeholders
Dati sul paziente

	
	

	$$IdPaziente$$
	$$NomeCognomeMedicoCurante$$

	$$CodiceFiscalePaziente$$
	$$NomeMedicoCurante$$

	$$NumLibrettoPaziente$$
	$$CognomeMedicoCurante$$

	$$NomeCognomePaziente$$
	

	$$NomePaziente$$
	$$DiagnosiCompletaPaziente$$

	$$CognomePaziente$$
	$$PrimaDiagnosiPaziente$$

	$$LuogoNascitaPaziente$$
	$$NotePercorsoPaziente$$

	$$DataNascitaPaziente$$
	$$ProtocolloTerapeuticoPaziente$$

	$$ResidenzaPaziente$$
	$$DiagnosiPaziente$$ (ICD9CM)

	$$ResidenzaProvincia$$
	$$DiagnosiPrincipalePaziente$$

	$$CodiceUSL$$
	(ICD9CM diagnosi principale)

	$$TesseraSanitariaPaziente$$
	

	$$RecapitoPaziente$$
	$$IdUnita$$

	$$ComuneDomicilioPaziente$$
	$$IdMedicoCOM$$

	$$TelefonoDomicilioPaziente$$
	$$TitoloMedicoCOM$$

	$$TelefonoParentiPaziente$$
	$$CognomeNomeMedicoCOM$$

	$$SostegnoPaziente$$
	$$NomeCognomeMedicoCOM$$

	$$AusiliPaziente$$
	$$RepartoMedicoCOM$$

	$$NazionalitaPaziente$$
	$$CognomeNomeInfermiereCOM$$

	$$LinguaPaziente$$
	$$NomeCognomeInfermiereCOM$$

	$$LinguaItalianaPaziente$$
	

	$$StatoCivilePaziente$$
	$$IdOperatore$$

	$$ProfessionePaziente$$
	$$OperatoreNome$$

	$$SessoPaziente$$
	$$OperatoreCognome$$

	$$LetteraSessoPaziente$$
	$$OperatoreTitoloMedico$$

	$$ArticoloPaziente$$
	$$OperatoreReparto$$

	$$TitoloPaziente$$
	

	
	$$Data$$

Data e ora correnti

$$Oggi$$

SELECT GETDATE() as value

SELECT CONVERT(varchar(8),GETDATE(),108) as value

I PlaceHolders nelle voci di Menu

Nelle voci diMenu vengono presi in considerazione solo $$IdPaziente$$ e $$Oggi$$

\sqlcom01.intranet.policlinico.mo.it\Userdata\Webdata\Com.NET.VIRTUAL_DIRS\xsl

Directory

$$XSL_INCLUDE_PATH$$ \\sqlcom01.intranet.policlinico.mo.it\Userdata\Webdata\Com.NET.VIRTUAL_DIRS\xsl
A2. Promemoria controlli XSL

Titoli

strXSLForm

<h2 class=""Status"">Inserimento nuovo Status</h2>

<h1 class=""Status""><xsl:value-of select=""/STATUS/@DescrizioneStatus""/></h1>

strXSLModifica
<center>

<h2 class=""Status"">Modifica Status</h2>

<h1 class=""Status""><xsl:value-of select=""/STATUS/@DescrizioneStatus""/></h1>

strXSLStampa

<h5 class=""Status""><xsl:value-of select=""/STATUS/@DescrizioneStatus""/></h5>

Data

Form & Mod

<input type=""text"" size=""10"" name=""datD"">

<xsl:attribute name=""onkeydown""> GetReturnKey (); </xsl:attribute>

<xsl:attribute name=""value"">

<xsl:value-of select=""CAMPO[@CodiceCampo='datD']/ValoreDefault""/>

</xsl:attribute>

</input>

Print

 <xsl:value-of select=""CAMPO[@CodiceCampo='datD']/ValoreDefault""/>
Txt

Form & Mod

<input type=""text"" name=""txtT"" size=""50""><xsl:attribute name=""value"">

<xsl:value-of select=""CAMPO[@CodiceCampo='txtT']/ValoreDefault""/>

</xsl:attribute></input>
Print

 <xsl:value-of select=""CAMPO[@CodiceCampo='txtT']/ValoreDefault""/>
TxtArea
Form & Mod

<textarea name=""txtNote"" rows=""3"" cols=""92"">

<xsl:value-of select=""CAMPO[@CodiceCampo='txtT']/ValoreDefault""/>

</textarea>
Print

 <xsl:value-of select=""CAMPO[@CodiceCampo='txtT']/ValoreDefault""/>
Combo

Form & Mod
<select name=""cmbBox"" size=""1"">

<xsl:for-each select=""CAMPO[@CodiceCampo='cmbBox']/ValoriLista/item""><option>

<xsl:if test=""@selected""><xsl:attribute name=""selected""></xsl:attribute></xsl:if>
<xsl:attribute name=""value""><xsl:value-of select=""value"" /></xsl:attribute>

<xsl:value-of select=""descr"" /></option></xsl:for-each></select>
La riga evidenziata non è necessaria in Form, ma non dà fastidio e consente di lasciare il codice invariato.
In entrambi i casi è possibile modificare l’attributo size e alzare l’attributo multiple:
<xsl:attribute name=""multiple""></xsl:attribute>
Print

 <xsl:value-of select=""CAMPO[@CodiceCampo='cmbBox']/ValoreDefault""/>
ChkBox
Form

<input type='checkbox' name='chkBox' value='1'></input>
Mod

<input type='checkbox' name='chkBox' value='1'>
<xsl:if test=""(CAMPO[@CodiceCampo='chkBox']/ValoreDefault) = '1'"">

<xsl:attribute name='checked'></xsl:attribute></xsl:if></input>
Print

<xsl:if test=""(CAMPO[@CodiceCampo='chkBox']/ValoreDefault) = '1'"">

 Sì </xsl:if>
Oppure

<xsl:if test=""CAMPO[@CodiceCampo='chkTerapiaE']/ValoreDefault = '1'"">
 <xsl:value-of select=""CAMPO[@CodiceCampo='chkTerapiaE']/DescrizioneCampo""/> </xsl:if>
radButton
Form

<xsl:for-each select=""CAMPO[@CodiceCampo='radButton']/ValoriListaSQL/item"">

<input type=""radio"" name=""radButton"">

<xsl:attribute name=""value""><xsl:value-of select=""value"" /></xsl:attribute>

</input><xsl:value-of select=""descr"" /></xsl:for-each>
Mod

<xsl:for-each select=""CAMPO[@CodiceCampo='radButton']/ValoriListaSQL/item"">

<input type=""radio"" name=""radButton"">

<xsl:attribute name=""value"">

<xsl:value-of select=""value"" />

</xsl:attribute>

<xsl:if test=""@selected"">

<xsl:attribute name=""checked"">

</xsl:attribute>

</xsl:if>
</input><xsl:value-of select=""descr"" />

</xsl:for-each>
Print

<xsl:value-of select=""CAMPO[@CodiceCampo='radButton']/ValoriListaSQL/item[@selected='true']/descr""/>
A3. I file XSL e le funzioni per i modelli di tipo diario

Per i modelli di tipo diario i file strXSLForm e strXSLStorico vengono visualizzati nella stessa pagina:

[image: image4.emf]

Il campo strXSLStampa viene usato dalla pagina pagModelloViewStoricoStampa.aspx che viene richiamata dal pulsante “Stampa selezionati”

Collegamento per vedere l’xml della parte di storico di un modello tipo diario

http://comnet.intranet.policlinico.mo.it/pagModello.aspx?strCodiceModello=RT_DIARIO&intRevisione=0&intIdPaziente=19063&GoToMapLinks=1&booviewxmlstorico=1
A3.1 il file strXSLStorico
Per poter stampare solo i modelli selezionati occorre mettere nel file strXSLStorico (contenuto nel campo omonimo):
1) per ogni voce di diario un checkbox con nome 'chkIdModelloValoreDaStampare'

<input type='checkbox' name='chkIdModelloValoreDaStampare'>

 <xsl:attribute name='value'>

 <xsl:value-of select="@IdModelloValore" />

 </xsl:attribute>

</input>

2) due pulsanti per la seleziona e la deselezione
<input type="button" id="btnSelezionaTutti" onclick="SelezionaTutti();" value="Seleziona tutti" />
<input type="button" id="btnDeselezionaTutti" onclick="DeselezionaTutti();" value="Deseleziona tutti" />
3) due funzioni di script ‘SelezionaTutti’ e ‘DeselezionaTutti’
<script language="vbscript">
function SelezionaTutti()

 dim coll

 dim obj

 set coll = document.all.tags("input")

 for each obj in coll

 if obj.type = "checkbox" and obj.name = "chkIdModelloValoreDaStampare" then

 obj.checked = True

 end if

 next

 end function

 function DeselezionaTutti()

 dim coll

 dim obj

 set coll = document.all.tags("input")

 for each obj in coll

 if obj.type = "checkbox" and obj.name = "chkIdModelloValoreDaStampare" then

 obj.checked = False

 end if

 next

 end function

 function StampaSelezionati()

 document.all.Form2.action = "pagModelloViewStoricoStampa.aspx"

 document.all.Form2.submit

 end function
 </script>

A3.2 il file strXSLStampa
Occorre aggiungere qualche riga di codice:
<xsl:choose>

 <xsl:when test="count(/LISTA_MODELLI/MODELLO[number(@booVisibile)=-1]) = 1">

per controllare se i nodi di tipo <MODELLO> sono più di uno e decidere se mettere l’intestazione o no:

 <xsl:choose>

 <xsl:when test="number(@booVisibile) = -1">

per verificare se il modello deve essere visibile oppure no. (Se non deve essere visibile il colore di tutti i font deve essere settato a white)

Ecco il codice completo scritto da Lorenzo:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="LISTA_MODELLI">

 <style>

 .tdVisibile

 {

 border-bottom: black 1px solid;

 border-right: black 1px solid;

 border-top: black 1px solid;

 border-left: black 1px solid;

 FONT-SIZE: 8pt;

 COLOR: black;

 FONT-FAMILY: Verdana;

 TEXT-ALIGN: left;

 vertical-align:text-top;

 background-color:#ccffff;

 padding-right: 2px; padding-left: 2px; padding-bottom: 2px; padding-top: 2px;

 }

 .tdInvisibile

 {

 border-bottom: white 1px solid;

 border-right: white 1px solid;

 border-top: white 1px solid;

 border-left: white 1px solid;

 FONT-SIZE: 8pt;

 COLOR: white;

 FONT-FAMILY: Verdana;

 TEXT-ALIGN: white;

 vertical-align:text-top;

 background-color:white;

 padding-right: 2px; padding-left: 2px; padding-bottom: 2px; padding-top: 2px;

 }

 .tblMainNonVisibile SPAN

 {

 border-right: white 4px solid;

 border-top: white 4px solid;

 border-left: white 4px solid;

 border-bottom: white 4px solid;

 background-color: white;

 }

 .tblMainNonVisibile SPAN

 {

 COLOR: white;

 }

 .tblCognomeNomeNonVisibile

 {

 border-right: white 3px solid;

 border-top: white 3px solid;

 border-left: white 3px solid;

 border-bottom: white 3px solid;

 }

 </style>

 <xsl:choose>

 <xsl:when test="count(/LISTA_MODELLI/MODELLO[number(@booVisibile)=-1]) = 1">

 <h1>Diario medico</h1>

 <table class="tblMain" cellpadding="2" cellspacing="0">

 <tr>

 <td>

 <table border="0" cellpadding="0" cellspacing="0">

 <tr>

 <td>

 <table class="tblCognomeNome" cellpadding="6" cellspacing="0">

 <tr>

 <td id="tdCognomeNome" class="tdCognomeNome" >

 <xsl:value-of select="PAZIENTE_INFO/COGNOMENOME"/>

 </td>

 </tr>

 </table>

 </td>

 <td>

 <xsl:value-of select="PAZIENTE_INFO/TESSARASANITARIA"/>

 <xsl:value-of select="PAZIENTE_INFO/LIBRETTO"/>

 <xsl:value-of select="PAZIENTE_INFO/CODICEFISCALE"/>

 <xsl:value-of select="PAZIENTE_INFO/ANNI"/>

 <xsl:value-of select="PAZIENTE_INFO/SESSO"/>

 <xsl:value-of select="PAZIENTE_INFO/COMUNENASCITA"/>

 <xsl:value-of select="PAZIENTE_INFO/DATANASCITA"/>

 </td>

 </tr>

 <tr>

 <td colspan="4">

 <xsl:value-of select="PAZIENTE_INFO/MEDICOFAMIGLIA"/>

 <xsl:value-of select="PAZIENTE_INFO/MEDICO"/>

 <xsl:value-of select="PAZIENTE_INFO/INFERMIERE"/>

 <xsl:value-of select="PAZIENTE_INFO/UNITA"/>

 </td>

 </tr>

 <tr>

 <td colspan="4">

 <xsl:value-of select="PAZIENTE_INFO/INDIRIZZODOMICILIO"/>

 <xsl:value-of select="PAZIENTE_INFO/UNITA"/>

 <xsl:value-of select="PAZIENTE_INFO/TELEFONOPARENTI"/>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </xsl:when>

 <xsl:otherwise>

 <h1 style="color:white;">Diario medico</h1>

 <table class="tblMainNonVisibile" cellpadding="2" cellspacing="0">

 <tr>

 <td>

 <table border="0" cellpadding="0" cellspacing="0">

 <tr>

 <td>

 <table class="tblCognomeNomeNonVisibile" cellpadding="6" cellspacing="0">

 <tr>

 <td id="tdCognomeNome" class="tdCognomeNome" >

 <xsl:value-of select="PAZIENTE_INFO/COGNOMENOME"/>

 </td>

 </tr>

 </table>

 </td>

 <td>

 <xsl:value-of select="PAZIENTE_INFO/TESSARASANITARIA"/>

 <xsl:value-of select="PAZIENTE_INFO/LIBRETTO"/>

 <xsl:value-of select="PAZIENTE_INFO/CODICEFISCALE"/>

 <xsl:value-of select="PAZIENTE_INFO/ANNI"/>

 <xsl:value-of select="PAZIENTE_INFO/SESSO"/>

 <xsl:value-of select="PAZIENTE_INFO/COMUNENASCITA"/>

 <xsl:value-of select="PAZIENTE_INFO/DATANASCITA"/>

 </td>

 </tr>

 <tr>

 <td colspan="4">

 <xsl:value-of select="PAZIENTE_INFO/MEDICOFAMIGLIA"/>

 <xsl:value-of select="PAZIENTE_INFO/MEDICO"/>

 <xsl:value-of select="PAZIENTE_INFO/INFERMIERE"/>

 <xsl:value-of select="PAZIENTE_INFO/UNITA"/>

 </td>

 </tr>

 <tr>

 <td colspan="4">

 <xsl:value-of select="PAZIENTE_INFO/INDIRIZZODOMICILIO"/>

 <xsl:value-of select="PAZIENTE_INFO/UNITA"/>

 <xsl:value-of select="PAZIENTE_INFO/TELEFONOPARENTI"/>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </xsl:otherwise>

 </xsl:choose>

</BR>

 <table border="0" cellpadding="0" cellspacing="0" style="BORDER-COLLAPSE: collapse" width="100%">

 <xsl:for-each select="MODELLO">

 <xsl:choose>

 <xsl:when test="number(@booVisibile) = -1">

 <xsl:choose>

 <xsl:when test="number(@booCancellato) = -1">

 <tr>

 <td width="20px" class="tdVisibile" >

 <p style="font-weight: bold; FONT-SIZE: 8pt; COLOR: red; FONT-FAMILY: Verdana; TEXT-ALIGN: left">cancellato</p>

 </td>

 <td width="200px" class="tdVisibile">

 <xsl:value-of select="@strOperatore"/> <xsl:value-of select="@datDataIns"/>

 </td>

 <td width="*" class="tdVisibile">

 <xsl:value-of select="CAMPO[@CodiceCampo='txtNoteDiario']/ValoreDefault"/>

 </td>

 <td width="100px" class="tdVisibile">

 nelle dimissioni
</BR>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) != 0">

 SI'

 </xsl:if>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) = 0">

 NO

 </xsl:if>

 </td>

 </tr>

 </xsl:when>

 <xsl:otherwise>

 <tr>

 <td colspan="2" width="200px" bgcolor ="#ccffff" class="tdVisibile">

 <xsl:value-of select="@strOperatore"/> <xsl:value-of select="@datDataIns"/>

 </td>

 <td width="*" bgcolor ="#ccffff" class="tdVisibile">

 <xsl:value-of select="CAMPO[@CodiceCampo='txtNoteDiario']/ValoreDefault"/>

 </td>

 <td width="100px" bgcolor ="#ccffff" class="tdVisibile">

 nelle dimissioni
</BR>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) != 0">

 SI'

 </xsl:if>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) = 0">

 NO

 </xsl:if>

 </td>

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <xsl:choose>

 <xsl:when test="number(@booCancellato) = -1">

 <tr>

 <td width="20px" >

 <p style="font-weight: bold; FONT-SIZE: 8pt; COLOR: white; FONT-FAMILY: Verdana; TEXT-ALIGN: left">cancellato</p>

 </td>

 <td width="200px" class="tdInvisibile">

 <xsl:value-of select="@strOperatore"/> <xsl:value-of select="@datDataIns"/>

 </td>

 <td width="*" class="tdInvisibile">

 <xsl:value-of select="CAMPO[@CodiceCampo='txtNoteDiario']/ValoreDefault"/>

 </td>

 <td width="100px" class="tdInvisibile">

 nelle dimissioni
</BR>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) != 0">

 SI'

 </xsl:if>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) = 0">

 NO

 </xsl:if>

 </td>

 </tr>

 </xsl:when>

 <xsl:otherwise>

 <tr>

 <td colspan="2" width="200px" class="tdInvisibile">

 <xsl:value-of select="@strOperatore"/> <xsl:value-of select="@datDataIns"/>

 </td>

 <td width="*" class="tdInvisibile">

 <xsl:value-of select="CAMPO[@CodiceCampo='txtNoteDiario']/ValoreDefault"/>

 </td>

 <td width="100px" class="tdInvisibile">

 nelle dimissioni
</BR>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) != 0">

 SI'

 </xsl:if>

 <xsl:if test="(CAMPO[@CodiceCampo='chkLetteraDimissioni']/ValoreDefault) = 0">

 NO

 </xsl:if>

 </td>

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </table>

 </xsl:template>

</xsl:stylesheet>
A3.2 la paagina pagModelloViewStoricoStampa.aspx
Questa pagina fa il request del parametro 'chkIdModelloValoreDaStampare' e quindi viene a sapere quali moduli sono stati selezionati dall’utente. La pagina quindi genera un xml che poi verrà unito con l’xslt del campo strXSLStorico).
Per ogni modello c’è un attributo che segnala se deve essere visibile oppure no, in pratica se era stato selezionato il checkbox metto booVisibile=”-1” altrimenti =”0”

In fondo ho aggiunto un nodo <PAZIENTE_INFO> che contiene le info sul paziente in modo che si possa mettere l’intestazione (nel’xslt del campo strXSLStorico faccio un controllo se i nodi di tipo <MODELLO> sono solo uno metto l’intestazione altrimenti no, questo vorrebbe dire che si sta stampando per la prima volta quindi ci vuole l’intestazione)

<?xml version="1.0" encoding="windows-1252"?>

<LISTA_MODELLI CodiceModello="MD_DIARIO_MEDICO" Revisione="0" IdPaziente="22504" DescrizioneModello="Diario Medico" booViewCancellatiNelloStorico="0">

 <MODELLO IdModelloValore="719971" strOperatore="SAMANTHA POZZI" datDataIns="16/07/2004 19:38" booCancellato='0' booVisibile='-1'>

 <CAMPO CodiceCampo='chkLetteraDimissioni'>

 <DescrizioneCampo></DescrizioneCampo>

 <TipoControllo>checkbox</TipoControllo>

 <TipoValore>char</TipoValore>

 <LunghezzaCampo>1</LunghezzaCampo>

 <Obbligatorio>False</Obbligatorio>

 <ValoreDefault>0</ValoreDefault>

 <ValoreDefaultSQL></ValoreDefaultSQL>

 <ValoriListaSQL>

 </ValoriListaSQL>

 <ValoriLista>

 </ValoriLista>

 </CAMPO>

 <CAMPO CodiceCampo='txtNoteDiario'>

 <DescrizioneCampo></DescrizioneCampo>

 <TipoControllo>textarea</TipoControllo>

 <TipoValore>text</TipoValore>

 <LunghezzaCampo></LunghezzaCampo>

 <Obbligatorio>True</Obbligatorio>

 <ValoreDefault>Ultima evacuazione due giorni fa; peristalsi presente; si imposta terapia catartica per os. Se domani non evacua clistere evacuativo.</ValoreDefault>

 <ValoreDefaultSQL></ValoreDefaultSQL>

 <ValoriListaSQL>

 </ValoriListaSQL>

 <ValoriLista>

 </ValoriLista>

 </CAMPO>

 </MODELLO>

 <MODELLO IdModelloValore="720010" strOperatore="VALERIA MAZZOCCHI" datDataIns="17/07/2004 09:22" booCancellato='0' booVisibile='0'>

 <CAMPO CodiceCampo='chkLetteraDimissioni'>

 <DescrizioneCampo></DescrizioneCampo>

 <TipoControllo>checkbox</TipoControllo>

 <TipoValore>char</TipoValore>

 <LunghezzaCampo>1</LunghezzaCampo>

 <Obbligatorio>False</Obbligatorio>

 <ValoreDefault>0</ValoreDefault>

 <ValoreDefaultSQL></ValoreDefaultSQL>

 <ValoriListaSQL>

 </ValoriListaSQL>

 <ValoriLista>

 </ValoriLista>

 </CAMPO>

 <CAMPO CodiceCampo='txtNoteDiario'>

 <DescrizioneCampo></DescrizioneCampo>

 <TipoControllo>textarea</TipoControllo>

 <TipoValore>text</TipoValore>

 <LunghezzaCampo></LunghezzaCampo>

 <Obbligatorio>True</Obbligatorio>

 <ValoreDefault>non particolari modificazioni del quadro clinico; assenza di sintomatologia addominale e non nuovi episodi dispnoici. Oggi eseguirà clistere evacuativo. Urgenza per il 19/7</ValoreDefault>

 <ValoreDefaultSQL></ValoreDefaultSQL>

 <ValoriListaSQL>

 </ValoriListaSQL>

 <ValoriLista>

 </ValoriLista>

 </CAMPO>

 </MODELLO>

 <PAZIENTE_INFO>

 <ID>22504</ID>

 <COGNOMENOME>ABATI/MARIA</COGNOMENOME>

 <DATANASCITA>04/12/1915</DATANASCITA>

 <CODICEFISCALE>BTAMRA15T44F257A</CODICEFISCALE>

 <COMUNENASCITA>MODENA</COMUNENASCITA>

 <STATO></STATO>

 <INDIRIZZODOMICILIO> CASTELNUOVO RANGONE,VIA J. BAROZZI, 8 </INDIRIZZODOMICILIO>

 <LIBRETTO>3801896</LIBRETTO>

 <MEDICO>LONGO GIUSEPPE</MEDICO>

 <SESSO>F</SESSO>

 <ANNI>91</ANNI>

 <TESSARASANITARIA>38018966</TESSARASANITARIA>

 <INFERMIERE></INFERMIERE>

 <MEDICOFAMIGLIA>PICCIOLI/PIERLUIGI</MEDICOFAMIGLIA>

 <TELEFONODOMICILIO></TELEFONODOMICILIO>

 <TELEFONOPARENTI></TELEFONOPARENTI>

 <UNITA></UNITA>

 </PAZIENTE_INFO>

</LISTA_MODELLI>

A4. Tips & Tricks

A4.1 riempire un campo con l’età in anni

strValoreDefaultSQL

"SELECT datediff(yy,datNascita,getdate()) as value from tblPazientiAnagDataBackup where intIdPaziente = $$IdPaziente$$”

A4.2 riempire un campo con il valore di un altro campo di tipo strValoreDefaultSQL
è come riempire un campo con il valore del modello più recente:

strValoreDefaultSQL

"SELECT
TOP 1 dbo.tblModelliCampiValori.strValore AS [value]

FROM
dbo.tblModelliValori INNER JOIN
dbo.tblModelliCampiValori

ON dbo.tblModelliValori.intIdModelloValore = dbo.tblModelliCampiValori.intIdModelloValore

WHERE
(dbo.tblModelliValori.intIdModelloValore = $$IdPaziente$$)

AND
(dbo.tblModelliValori.strCodiceModello = 'RT_FRONTESPIZIO')

AND
(dbo.tblModelliValori.intRevisione = 0)

AND
(dbo.tblModelliCampiValori.strCodiceCampo = 'cmbICD9')

ORDER BY
dbo.tblModelliCampiValori.intIdModelloValore DESC"
A4.3 riempire un campo con il valore di diversi modelli e/o campi

Sono estensioni di quanto detto in A4.2: la query è solo un po’ più complicata

· stesso campo da più modelli:

SELECT tblModelliCampiValori.strValoreText as value FROM tblModelliCampiValori INNER JOIN tblModelliValori ON tblModelliCampiValori.intIdModelloValore = tblModelliValori.intIdModelloValore WHERE tblModelliCampiValori.strCodiceCampo='txtTesto3' AND tblModelliValori.intIdPaziente=$$IdPaziente$$ AND (tblModelliValori.strCodiceModello='LT_AI_2' OR tblModelliValori.strCodiceModello='LT_AI_3') AND tblModelliValori.intRevisione=0 AND tblModelliValori.booCancellato=0 order by tblModelliValori.intIdModelloValore desc
· più campi da uno o più modelli:

SELECT cast(Valore1 as varchar)+' ' +cast(Valore2 as varchar) AS Value FROM
(SELECT top 1 mcv.strValoreText as Valore1 FROM tblModelliCampiValori mcv INNER JOIN tblModelliValori mv ON mcv.intIdModelloValore = mv.intIdModelloValore WHERE mcv.strCodiceCampo='txtTesto1' AND mv.intIdPaziente=$$IdPaziente$$ AND (mv.strCodiceModello='LT_AI_2' OR mv.strCodiceModello='LT_AI_3') AND mv.intRevisione=0 AND mv.booCancellato=0 order by mv.intIdModelloValore desc) AS T1,
(SELECT top 1 mcv.strValoreText as Valore2 FROM tblModelliCampiValori mcv INNER JOIN tblModelliValori mv ON mcv.intIdModelloValore = mv.intIdModelloValore WHERE mcv.strCodiceCampo='txtTesto2' AND mv.intIdPaziente=$$IdPaziente$$ AND (mv.strCodiceModello='LT_AI_2' OR mv.strCodiceModello='LT_AI_3') AND mv.intRevisione=0 AND mv.booCancellato=0 order by mv.intIdModelloValore desc) AS T2

Si noti anche l’utile uso dell’alias di tabella.

A4.4 riempire un campo con il valore di un altro campo di tipo strValoriLista

Quando un campo è di tipo Lista Valori, non è banale mantenere il valore precedente:

occorre riempire il campo come detto sopra in A4.2, poi occorre definire una variabile ed eseguirem un test come nel codice seguente:

<xsl:variable name =""pertest"" select =""CAMPO[@CodiceCampo='cmbAffidamento']/ValoreDefaultSQL""></xsl:variable>

<select name=""cmbAffidamento"" size=""8"">

<xsl:for-each select=""CAMPO[@CodiceCampo='cmbAffidamento']/ValoriLista/item"">

<option>

<xsl:if test=""($pertest = value)"">

<xsl:attribute name=""selected"">
</xsl:attribute>

</xsl:if>

<xsl:attribute name=""value"">
<xsl:value-of select=""value"" /></xsl:attribute>

<xsl:value-of select=""descr"" />

</option>

</xsl:for-each>

</select>

Se il campo è a scelta multipla

<xsl:attribute name=""multiple""></xsl:attribute>

Che viene memorizzata come lista separata da virgole, occorre scrivere una funzione che attualmente non esiste.

A4.5 aggiungere campi a Modelli o Status già in uso

Per aggiungere campi a Modelli o Status già in uso non è sufficiente aggionare le tabelle tblModelli e tblModelliCampi (e tblStatus/tblStatusCampi), ma occorre aggiungere i record necessari alla tabella tblModelliCampiValori (o tblStatusCampiValori) dei Mdelli/Status già compilati.

Ecco un paio di query per fare ciò:
INSERT INTO [dbo].[tblStatusCampiValori]

 ([intIdStatusValore]

 ,[strCodiceCampo]

 ,[strValore]

 ,[datValore]

 ,[fltValore]

 ,[strValoreText])

SELECT

dbo.tblStatusValori.[intIdStatusValore]

--[strCodiceCampo]

, 'datFineRadioterapia'

,null

,null

,null

,null

FROM [dbo].[tblStatusCampiValori] INNER JOIN

dbo.tblStatusValori ON dbo.tblStatusCampiValori.intIdStatusValore = dbo.tblStatusValori.intIdStatusValore

WHERE

(dbo.tblStatusValori.strCodiceStatus = 'puntomam')

AND (dbo.tblStatusValori.intRevisione = 1)

AND (dbo.tblStatusCampiValori.strCodiceCampo = 'datValutMultidisciplinare')

INSERT INTO [tblModelliCampiValori]

 ([intIdModelloValore]

 ,[strCodiceCampo]

 ,[strValore]

 ,[datValore]

 ,[fltValore]

 ,[strValoreText])

select

intIdModelloValore,

'cmbPasso',

'',

null,

null,

null

from dbo.tblModelliValori

where strCodiceModello = 'RT_DIARIO'[image: image5.png]

COM.NET Modelli - Rev 4.9 – dicembre 2007
pag. 14

[image: image6.png][image: image7.png]